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A theoretical analysis of equilibrium magnetohydrodynamic flows in annular channels
is performed from the perspective of establishing required conditions for liquid metal
magnetorotational instability (MRI) experiments. Two different types of fluid rotation
are considered: electrically driven flow in an annular channel and Taylor–Couette
flow between rotating cylinders. The structure of these flows is studied within a unified
approach as a function of the Hartmann and Reynolds numbers. The parameters
appropriate for realization of MRI experiments are determined.

1. Introduction
The study of magnetohydrodynamic (MHD) flows in annular channels is of great

current interest due to the experimental search for magnetorotational instability
(MRI). MRI occurs when the angular velocity of the conducting fluid rotating in
a transverse magnetic field decreases with radius (Velikhov 1959; Balbus & Hawley
1991), i.e.

∂Ω

∂R
< 0. (1.1)

This condition is valid for many astrophysical objects (accretion disks, active galactic
nuclei, etc.) where the rotation of matter obeys the Keplerian law Ω ∝ R−3/2. Once ma-
gnetized the flow in these objects can become unstable through the mechanism of MRI.
This results in different phenomena such as enhanced angular momentum transport
and magnetic dynamo (Balbus & Hawley 1998; Balbus 2003; Silk & Langer 2006).

Because of the role played by MRI in astrophysics, a number of experiments have
been initiated in recent years to test this instability in the laboratories (Noguchi et al.
2002; Noguchi & Pariev 2003; Ji et al. 2004; Sisan et al. 2004; Stefani et al. 2006;
Velikhov et al. 2006b). The idea of these experiments is to drive the rotation of a
conducting fluid (liquid metal or plasma) and investigate its stability in an external
magnetic field. For implementation of the MRI experiment, it is crucial to achieve an
initial equilibrium rotation profile, which can be unstable with respect to the MRI (1.1)
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Figure 1. Sketch of magnetized TCF.

but is always stable to other instabilities (for example, hydrodynamical). The latter
condition requires that the angular momentum per unit mass of rotating fluid increases
as one moves radially outward. This is known as the Rayleigh stability criterion:

∂(R2Ω)

∂R
� 0. (1.2)

The rotation profiles satisfying both (1.1) and (1.2) are sometimes called quasi-
Keplerian. They are the preferred initial background flows in MRI experiments.

Experimental observations of the MRI have been reported in two experiments
(Sisan et al. 2004; Stefani et al. 2006). Sisan et al. (2004) reported observing the
MRI in a spherical geometry on the background of an already turbulent flow.
Stefani et al. (2006) reported detecting the so-called helical MRI in cylindrical flow
in the combined axial and azimuthal magnetic fields. Helical MRI is currently the
subject of intense discussions in the literature (Liu et al. 2006; Liu, Goodman & Ji
2007; Lakhin & Velikhov 2007; Rüdiger & Hollerbach 2007; Szklarski 2007; Stefani,
Gailitis & Gerbeth 2008). The advantage of the helical MRI is that the presence of the
azimuthal magnetic field reduces the instability threshold substantially (Hollerbach &
Rüdiger 2005). Another way to reduce the MRI threshold in a cylindrical geometry
is to use a non-uniform axial magnetic field (Ilgisonis & Khalzov 2007).

As for the standard MRI (i.e. MRI in cylindrical geometry with a uniform axial
magnetic field), there has been no clear detection of this instability despite the
numerous theoretical studies and attempts to observe it experimentally. This is due
to several reasons, one of them being the difficulty of obtaining of quasi-Keperian
flows in practice. In this paper we will focus on liquid metal equilibrium flows that
are appropriate for experimental observation of the standard MRI.

Two different mechanisms of fluid rotation have been proposed for MRI
experiments: mechanical drive by virtue of the viscous drag force acting on the
fluid between rotating coaxial cylinders – the so-called Taylor–Couette flow or TCF
(figure 1; Noguchi et al. 2002; Ji et al. 2004; Stefani et al. 2006), and electrical drive by
the Ampere force arising when an electric current is passed through the fluid, which is
in a transverse magnetic field – electrically driven flow or EDF (figure 2; Noguchi &
Pariev 2003; Velikhov et al. 2006b). In most of the existing MRI experiments TCF is
used. In the idealized case of infinitely long cylinders, TCF has the following radial
profile of angular velocity:

Ω(R) = a +
b

R2
, (1.3)
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Figure 2. Sketch of EDF in an annular channel.

where the constants a and b are determined by the angular velocities of the cylinders
and their radii. By adjusting these constants it is possible, in theory, to achieve a quasi-
Keplerian flow. However, this situation is hard to realize experimentally, because in the
real experiment the cylinders are bounded by the end plates (stationary or rotating).
This affects the entire equilibrium flow, making its radial profile significantly different
from the idealized one given by (1.3). As a result, the conditions for MRI may not
be met and/or other parasitic instabilities (such as the Kelvin–Helmholtz instability)
may be excited in the flow.

In the case of EDF, the flow forms the so-called Hartmann layers near the top
and bottom walls and parallel boundary layers near the sidewalls of the channel. The
widths of these layers scale with the Hartmann number, Ha (which is proportional
to the external magnetic field; see (2.1)). By applying a large magnetic field, these
boundary layers can be reduced considerably; then the bulk of the flow assumes a
quasi-Keplerian rotation profile (Baylis & Hunt 1971)

Ω(R) =
C

R2
, (1.4)

where the constant C is determined by the physical properties of the fluid and the
total electric current passed through the channel. So, in any MRI experiment it is
important to choose appropriate parameters in order to reduce the effect of the walls
and keep the bulk of the flow uniform in the axial direction and quasi-Keplerian
in the radial direction. This necessitates a theoretical analysis of equilibrium flow
structure in the geometry relevant to MRI experiments.

The equilibrium structure of EDF in annular channels has been addressed in
a number of papers (see, for example, Baylis & Hunt 1971; Pothérat, Sommeria &
Moreau 2000; Khalzov & Smolyakov 2006). Baylis & Hunt (1971) studied equilibrium
EDF analytically (neglecting the effect of inertia) and found a good agreement with
experimental results. A quite general approach for the analytical description of MHD
flows with small magnetic Prandtl numbers (a common property for liquid metals)
in transverse magnetic field was proposed by Pothérat et al. (2000). Khalzov &
Smolyakov (2006) developed a numerical method for calculating stationary MHD
flows in channels with a rectangular cross-section. This method was used to find the
structure of EDF for a particular set of parameters.

The equilibrium TCF between bounded cylinders in axial magnetic field has also
been a subject of recent theoretical studies (see, for example, Kaneda et al. 2005;
Tagawa & Kaneda 2005; Youd & Barenghi 2006; Szklarski & Rüdiger 2007;
Liu 2008a). The majority of these studies deal with the MHD modification of
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hydrodynamic Ekman layers induced in the flow by the end plates (Szklarski &
Rüdiger 2007; Liu 2008a). At the same time, the effect of the magnetic field on TCF
is global, it is not simply reduced to the development of new types of boundary layers.
This effect remains poorly understood, although it is of primary importance to the
success of MRI experiments.

In this paper, we perform a theoretical study of the equilibrium structure of
both EDF and TCF within a unified approach as a function of the Hartmann
and Reynolds numbers. Our main analytical results are obtained by employing
the method of Pothérat et al. (2000), while numerical simulations are based on
the procedure proposed by Khalzov & Smolyakov (2006). The structure of the
paper is the following. In § 2, we formulate the problem of finding an axisymmetric
incompressible MHD flow in an annular channel. Section 3 gives an outline of the
numerical method developed by Khalzov & Smolyakov (2006). In § 4, the EDF of
liquid metal is considered. Section 5 deals with Taylor–Couette flow in an axial
magnetic field and its possible regimes. In § 6 we summarize the conditions that have
to be satisfied in both cases to realize the rotation profiles appropriate for MRI
experiments.

2. Statement of the problem
We consider the problem of finding the equilibrium flow of liquid metal in an

annular channel with a rectangular cross-section. At this point, the mechanism of
flow drive is not specified: it can be either TCF (figure 1) or EDF (figure 2). This
mechanism is specified below by an appropriate choice of boundary conditions.

The channel is an axisymmetric toroid with inner radius R1, outer radius R2

and height H . Its axis of symmetry coincides with the Z axis of the cylindrical
coordinate system {R, ϕ, Z}. In order to simplify consideration, we make the following
assumptions:

(i) liquid metal completely fills the channel; its density ρ, kinematic viscosity ν and
electric conductivity σ are constant throughout the entire volume;

(ii) the channel is placed into an external uniform magnetic field directed along the
Z axis, B0 =B0ez;

(iii) the magnetic field induced by currents in the liquid metal is negligible compared
with the externally applied field B0 (inductionless approximation);

(iv) the equilibrium flow is axisymmetric, i.e. for any physical quantity ∂/∂ϕ = 0.
Formally, inductionless approximation (assumption iii) is applicable when the
magnetic Reynolds number is small, Rem � 1 (Müller & Bühler 2001). However,
in the problem under consideration, this condition can be relaxed for large Hartmann
numbers, Ha � 1. As shown by Khalzov & Smolyakov (2006), for EDF the ratio
of induced magnetic field to the external one is about Rem/Ha , so the inductionless
approximation is valid if Rem � Ha . Here, and in the rest of the paper, we use the
following definitions of the Reynolds, magnetic Reynolds and Hartmann numbers:

Re =
L0V0

ν
, Rem = μ0σL0V0, Ha = L0B0

√
σ

ρν
, (2.1)

where μ0 is the vacuum permeability, L0 = H/2 is a unit of length, B0 is the magnitude
of the applied magnetic field and V0 is the characteristic value of velocity that will be
specified below, depending on the type of the flow.
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The equilibrium flow of liquid metal is described by incompressible dissipative
MHD equations. In inductionless approximation, they are (Müller & Bühler 2001)

∇ · v = 0, (2.2)

∇ · j = 0, (2.3)

Re (v · ∇)v = −∇p + Ha j × b0 + ∇2v, (2.4)

j = −∇φ + Ha v × b0. (2.5)

Here, b0, v, j , p, φ stand for applied magnetic field, velocity, current density,
pressure, and electric potential, scaled by B0, V0, J0 = σV0B0/Ha , P0 = ρV 2

0 /Re and
Φ0 = L0V0B0/Ha , respectively. As one can see, the solution to the system (2.2)–(2.5)
depends only on two dimensionless parameters – Reynolds and Hartmann numbers.

In the case of axial symmetry (assumption iv), it is convenient to represent the
normalized velocity v and current density j in the form, automatically satisfying
divergence-free conditions (2.2) and (2.3):

v =
1

r
∇w(r, z) × eϕ +

u(r, z)

r
eϕ,

j =
1

r
∇h(r, z) × eϕ +

g(r, z)

r
eϕ,

where r = R/L0 and z = Z/L0 are scaled coordinates, functions w and h are poloidal
stream functions of the velocity and the current density, and functions u and g

represent angular momentum of the fluid and ‘momentum’ of the toroidal current
density, respectively. Substituting these expressions into (2.4) and (2.5), one obtains
after some mathematical manipulations:

0 = 
∗u + Ha
∂h

∂z
+

Re

r
[u, w], (2.6)

0 = 
∗h + Ha
∂u

∂z
, (2.7)

0 = 
∗
∗w − Ha2 ∂2w

∂z2
− Re

(
r

[
w,


∗w

r2

]
+

1

r2

∂u2

∂z

)
, (2.8)

g = Ha
∂w

∂z
, (2.9)

where the following notation is used

[f, g] ≡ ∂f

∂r

∂g

∂z
− ∂f

∂z

∂g

∂r
, 
∗ = r

∂

∂r

1

r

∂

∂r
+

∂2

∂z2
.

System (2.6)–(2.9) is the basis for our analysis of equilibrium axisymmetric MHD
flow of a liquid metal in an annular channel.

System (2.6)–(2.9) has to be solved for adequate hydrodynamic and electric
boundary conditions. The standard hydrodynamic boundary condition is

v|S = v(w)|S, (2.10)

where v(w) is the velocity of the wall, and S denotes the fluid–wall interface, which in
our case is S = {z = ±1 (top and bottom walls), r = r1,2 = R1,2/L0 (sidewalls)}.

The boundary conditions for the electric current density j are determined by the
conductivity of the channel walls. In this study, we assume that the top and bottom
walls of the channel are insulating, while the sidewalls are perfectly conducting
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for both EDF and TCF. Normal components of the current density vanish at the
insulating walls,

jz|z=±1 = 0. (2.11)

At the interface between fluid and perfectly conducting walls the potential becomes
uniform, leading to the absence of tangential components of the current density

jz|r=(r1,r2) = 0, jϕ |r=(r1,r2) = 0 (2.12)

Conditions (2.11) and (2.12) can be combined to give a boundary condition for the
poloidal current stream function h:

∂h

∂r

∣∣∣∣
S

= 0. (2.13)

The toroidal current function g is completely determined by (2.9).
We note that the geometry of the problem implies symmetry with respect to the

plane z = 0. Therefore, the unknown functions are either even or odd functions
of z. In our study we take u and g to be even and h and w to be odd functions
of z. These requirements are consistent with system (2.6)–(2.9) and corresponding
boundary conditions.

3. Numerical method
In this section, we outline a numerical method developed by Khalzov & Smolyakov

(2006) for solving systems of two-dimensional elliptical equations. This is a finite-
difference method using the well-known iterative Jacobi algorithm with checkerboard
updating of the grid function and successive over-relaxation (see, for example, Press
et al. 1992). For system (2.6)–(2.8) the iterative scheme is

yn+1
i,j = (1 − μ) yn

i,j +
1

4
μ

[(
1 − s

2ri

)
yn

i+1,j

+

(
1 +

s

2ri

)
yn

i−1,j + yn
i,j+1 + yn

i,j−1 + s2 f i,j ( yn, r)

]
, (3.1)

where y is an unknown vector function

y(r, z, t) =

⎛
⎜⎜⎜⎝

u(r, z, t)

h(r, z, t)

w̃(r, z, t)

w(r, z, t)

⎞
⎟⎟⎟⎠ ,

f is a source vector function

f ( y, r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Ha
∂h

∂z
− Re

r
[u, w]

−Ha
∂u

∂z

Ha2 ∂w

∂z2
+ Re

(
r

[
w,

w̃

r2

]
+

1

r2

∂u2

∂z

)

w̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

μ is the relaxation parameter and s is the grid spacing (equal in r- and z-directions).
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R1 (cm) R2 (cm) H (cm) Fluid Ha Re

Obninsk 3 15 6 Na 100 0–1.4×106

Princeton 7 21 28 Ga 0–3100 0–6.3×106

Table 1. Parameters of the Obninsk and Princeton MRI experiments.
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Figure 3. Deviation of numerically calculated value of u from its analytical value (4.8) at
z = 0.96 for different number of grid points in the z-direction. Numerical calculations are
performed using reduced system (4.6) and (4.7) for Ha = 30.

Based on the iterative scheme (3.1), Khalzov & Smolyakov (2006) implemented a
numerical code in C++ for the calculations of the equilibrium axisymmetric MHD
flows in annular channels with rectangular cross-section. We used this code to obtain
the results reported here. In our simulations, the relaxation parameter μ was chosen
by the trial and error method to ensure the convergence of the iterations. The grid
was uniform with spacing s = 0.02 in both directions; this corresponded to Nz = 100
grid points in the z-direction and Nr = 50 (for TCF) or Nr =200 (for EDF) grid
points in the r-direction. This was enough to resolve all boundary layers; besides,
our test runs with higher resolution did not show much difference (see figure 3). The
accuracy of the obtained results is also demonstrated in figures 5(i.d, ii.d ) and 8(i.d,
ii.d, iii.d ), where the balance of different terms of (2.6) is shown.

4. Electrically driven flow
In this section, we study a liquid metal flow driven by imposed electric current

in the presence of a transverse magnetic field (figure 2). The study is performed
for the geometry of the Obninsk MRI experiment proposed by Velikhov et al.
(2006b) (table 1): normalized radii of inner and outer cylinders are r1 =R1/L0 = 1
and r2 = R2/L0 = 5, respectively, where H = 2L0 is the height of the channel. In order
to describe the characteristic features of this type of flow, we consider the flow
at Hartmann and Reynolds numbers different from those expected in the Obninsk
experiment. The analytical part of our study is based on the method of Pothérat et al.
(2000), who used the averaging of the force-balance equation along the magnetic field
lines.
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4.1. Boundary conditions for electrically driven flow

In EDF, all channel walls are stationary, so v|S = 0 (2.10). Taking into account the
oddness of the poloidal velocity stream function w with respect to z, we obtain

u|S = 0, (4.1)

w|S = 0,
∂w

∂r

∣∣∣∣
r=(r1,r2)

= 0,
∂w

∂z

∣∣∣∣
z=±1

= 0. (4.2)

The boundary conditions for the poloidal current stream function h follow from
(2.13), which means that h is constant at the top and bottom channel walls, i.e.
h|z = ±1 = ±h0 (h is odd function of z). This constant is related to the total electric
current I0 flowing through the fluid. Indeed, the total radial current in an arbitrary
section R = const of the channel is

I0 = −J0L
2
0

∫ 1

−1

2πrjrdz =
4πL0B0Rem

μ0Ha
h0. (4.3)

The positive sign of the total current, I0 > 0, corresponds to a current flowing from the
outer channel wall to the inner one. As discussed by Khalzov & Smolyakov (2006),
for EDF it is convenient to choose h0 = 1, i.e.

∂h

∂r

∣∣∣∣
r=(r1,r2)

= 0, h|z=±1 = ±1. (4.4)

Then the value h(r, z) shows the part of the total current flowing between planes −z

and z at a given radius r . Moreover, from (4.3) one obtains the characteristic value
of angular momentum (per unit mass) of the EDF

M0 ≡ L0V0 =
I0

4π
√

ρσν
. (4.5)

It should be stressed here that the characteristic value of the angular momentum (4.5)
is independent of the magnetic field. The Reynolds number in EDF is proportional
to the total current:

Re ≡ M0

ν
=

I0

4πν
√

ρσν
.

Such definition of Re is very convenient since it is not related to a particular structure
of flow.

Equations (4.1), (4.2) and (4.4) constitute a complete set of boundary conditions
for EDF.

4.2. Hartmann flow

First, we consider EDF in the central part of the channel far from the sidewalls. In
this case, one can neglect the radial dependence of flow parameters (∂/∂r → 0), then
system (2.6)–(2.9) is reduced to equations

0 =
∂2u

∂z2
+ Ha

∂h

∂z
, (4.6)

0 =
∂2h

∂z2
+ Ha

∂u

∂z
. (4.7)

The same system of equations is obtained in the analysis of the equilibrium
liquid metal flow between two infinite plates in a transverse magnetic field –
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Figure 4. Hartmann flow: (a) normalized angular momentum (4.8) and (b) poloidal current
stream function (4.9) at different values of the Hartmann number Ha .

the so-called Hartmann flow (Müller & Bühler 2001). The difference is only in
the physical meaning of the functions u and h: for Hartmann flow they are
normalized components of velocity and induced magnetic field, respectively; for
annular channel they are normalized angular momentum of the fluid, u = rvϕ ,
and poloidal current stream function (or ‘momentum’ of azimuthal magnetic field),
h = rbϕ . Such analogy between the angular momentum and the velocity in straight
geometry is well known in the literature (see, for example, Heiser & Shercliff
1965).

The exact solution to system (4.6) and (4.7) satisfying boundary conditions (4.1)
and (4.4) is

u(z) =
coshHa − cosh(Ha z)

sinhHa
, (4.8)

h(z) =
sinh(Ha z)

sinhHa
. (4.9)

These dependencies are shown in figure 4 for different values of the Hartmann
number. At large Hartmann numbers Ha � 1, the flow develops the boundary layers
of thickness O(Ha−1) – the so-called Hartmann layers.

The Hartmann profile of angular momentum (4.8) is of crucial importance in the
study of equilibrium MHD flows in annular channels. As shown below, at large
Hartmann numbers, the z-dependence of angular momentum in both electrically
driven and Taylor–Couette flows is very well approximated by (4.8).
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4.3. Radial profile of angular momentum

For large Hartmann numbers the angular momentum of electrically driven fluid in
an annular channel can be described by the expression

u(r, z) = u0(r)
coshHa − cosh(Ha z)

sinhHa
, (4.10)

which takes into account the presence of the Hartmann layers in the flow and
assumes some radial dependence u0(r) of the angular momentum in the core region.
Approximation (4.10) is verified by the following analysis and numerical simulations.

The equation that governs the radial profile of the angular momentum u0(r) was
obtained by Pothérat et al. (2000), who used the averaging of the force-balance
equation in z-direction (along the magnetic field lines):

∂2u0

∂r2
− 1

r

∂u0

∂r
− Hau0 + Ha − 7Re2

36rHa3

∂

∂r

(
u3

0

r2

)
= 0. (4.11)

This equation has a clear physical meaning. The first three terms describe the z-
averaged viscous friction due to non-uniformity of the angular momentum. The
fourth term is the Ampere force (electrical drive), which is proportional to the total
current flowing through the channel. The last term is the inertia; it expresses nonlinear
radial transport of angular momentum by the secondary (poloidal) flows.

Depending on the relative values of the viscous, Ampere and inertial forces, two
flow regimes are realized. Simple estimates show that the inertia in (4.11) can be
neglected if (Baylis & Hunt 1971)

Re � Ha2

(
R1

H

)2

. (4.12)

This is the so-called inertialess regime. In this regime, viscous forces near the
channel walls are balanced by the Ampere force. The case of the opposite inequality
corresponds to the inertial flow, in which all forces are comparable. In the subsequent
sections we consider these two regimes in more details.

4.4. Inertialess regime

If condition (4.12) is satisfied, the nonlinear term in (4.11) can be neglected:

∂2u0

∂r2
− 1

r

∂u0

∂r
− Hau0 + Ha = 0. (4.13)

This ordinary differential equation possesses an exact solution which is expressed in
terms of the modified Bessel function of the first kind:

u0(r) = 1 − r

I1(
√

Ha(r2 − r1))

[
1

r1

I1(
√

Ha(r2 − r)) +
1

r2

I1(
√

Ha(r − r1))

]
, (4.14)

where the boundary condition (4.1) is taken into account. The dependence (4.14) is
simplified near the walls at r = r1,2, namely:

u0(x) ≈ 1 − exp(−
√

Ha x), (4.15)

where x = |r − r1,2| is a non-dimensional distance measured from the corresponding
wall. We note that (4.15) describes the side boundary layers of thickness O(Ha−1/2)
(they are known as parallel layers). If r2 − r1 � Ha−1/2 or, in other words, if

R2 − R1 � H√
Ha

, (4.16)
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then these layers are small compared with the channel width and the normalized
angular momentum is close to 1 in the most part of the flow. In this case, the angular
velocity of EDF in the channel can be approximated as (in dimensional units)

Ω(R) =
M0

R2
, (4.17)

where M0 is defined by (4.5). Such rotation is quasi-Keplerian and suitable for MRI
experiments.

The calculated structure of EDF in inertialess regime (Re = 10, Ha =30) is presented
in figure 5(i.a–d ). From figure 5(i.a) one can see that the normalized angular
momentum is equal to 1 almost entirely in the cross-section of the channel with
the exception of boundary layers near the walls. This result is in a good agreement
with (4.10) and (4.14); the comparison is shown in figure 6.

The electric current lines (contours of the function h(r, z)) are shown in figure 5(i.c).
At large Hartmann numbers, almost all the current in electrically driven fluid is
expelled to the top and bottom walls and flows through the thin Hartmann layers.

The balance of different terms in (2.6) in the mid-plane of the channel (at z = 0)
is presented in figure 5(i.d ). In inertialess regime the bulk of EDF is force-free,
and only in the parallel boundary layers viscosity is balanced by the Ampere
force.

4.5. Effect of inertia

Now we consider the influence of inertia (the nonlinear term in (4.11)) on the radial
profile of angular momentum u0(r) assuming that (4.12) is violated, i.e.

Re ≈ Ha2

(
R1

H

)2

.

This influence is most important in the region of the parallel layers near the walls at
r = r1,2. As shown by Pothérat et al. (2000), in this case the non-dimensional width of
the parallel layers can be approximated by

δ1 ≈ Re2

r3
1Ha4

(4.18)

for the inner wall, and by

δ2 ≈ r3
2Ha3

Re2
(4.19)

for the outer wall. Thus, if inertia is large, the inner parallel layer (4.18) penetrates the
bulk of the flow forming poloidally rotating vortices. As a result, the rotation profile
is changed significantly and the conditions for MRI excitation may not be met. This
precludes the use of the inertial EDF in MRI experiment. The outer parallel layer,
on the contrary, decreases with growth of the Reynolds number according to (4.19).

The calculated equilibrium structure of EDF in inertial regime (Re = 4000, Ha = 30)
is shown in figure 5(ii.a–d ). The typical feature of the flow in inertial regime is the
development of two poloidal circulation cells (figure 5ii.b). Their presence leads to
a coupling of the azimuthal velocity component with radial and axial ones (inertial
effects). These effects result in a change of the angular momentum profile (figure 5ii.a)
and modification of the force balance (figure 5ii.d ).

The radial profiles of the angular momentum u for different values of Reynolds
number are presented in figure 7(a). As follows from this figure, with growth of Re,
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Figure 5. Calculated structure of EDF in (i ) inertialess (Re =10, Ha = 30) and (ii ) inertial
(Re = 4000, Ha = 30) regimes: (a) normalized angular momentum u(r, z); (b) poloidal
circulation lines (contours of w(r, z)); (c) electric current lines (contours of h(r, z)); (d ) balance
of toroidal forces in the mid-plane of the channel at z = 0. Calculations are performed using
the full system (2.6)–(2.8).

the boundary layer increases near the inner wall of the channel and decreases near the
outer wall. Such behaviour of the parallel boundary layers is qualitatively described
by (4.18) and (4.19).

Our numerical simulations show that the dependence of the angular momentum in
the Hartmann layers near the top and bottom walls of the channel remains practically
the same for the wide range of Reynolds numbers (figure 7b) and corresponds to the
Hartmann flow profile (4.8). This validates the use of representation (4.10).
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5. Taylor–Couette flow
In this section, we perform a theoretical study of a liquid metal flow between two

coaxial rotating cylinders (figure 1) placed in an axial magnetic field. We demonstrate
characteristic features of TCF at different values of the Reynolds and Hartmann
numbers in the geometry of the Princeton MRI experiment (table 1): normalized radii
of inner and outer cylinders are r1 = R1/L0 = 0.5 and r2 =R2/L0 = 1.5, respectively,
where H = 2L0 is the height of the channel. We also analyse the effect of the split end
caps on the TCF. For simplicity, we assume that end caps are insulating, cylinders
are perfectly conducting and both cylinders are rotating with the same angular
momentum, i.e. Ω1R

2
1 =Ω2R

2
2 = M0. These assumptions still provide quite general

results; moreover, they allow comparison of TCF with EDF (which is, roughly
speaking, a flow with constant angular momentum; see (4.17)). The effect of the
conductivity of the channel walls on the TCF is not considered here and will be
published elsewhere.

5.1. Boundary conditions for Taylor–Couette flow

In the case of TCF, the boundary conditions for velocity components are analogous
to those in EDF ((4.1) and (4.2)):

u|r=(r1,r2) = u1,2, u|z=±1 = 0, (5.1)

∂w

∂r

∣∣∣∣
r=(r1,r2)

= 0,
∂w

∂z

∣∣∣∣
z=±1

= 0, w|S = 0, (5.2)

where u1 and u2 are non-dimensional angular momenta corresponding to rotating
inner and outer walls, i.e.

u1 =
M1

M0

=
Ω1R

2
1

M0

, u2 =
M2

M0

=
Ω2R

2
2

M0

.

Here, M0 is the characteristic angular momentum. It can be chosen to be equal to
either M1 or M2, whichever is not zero.

Assuming insulating end plates and perfectly conducting cylinders, we arrive at
the boundary conditions for the poloidal current stream function h(r, z), which are
similar to (4.4)

∂h

∂r

∣∣∣∣
r=(r1,r2)

= 0, h|z=±1 = 0. (5.3)

The last condition takes into account the fact that the total electric current between
the cylinders is absent.

The structure of TCF is determined completely by system (2.6)–(2.9) and boundary
conditions (5.1–5.3).

5.2. Boundary layers near end plates

It is well known that TCF is strongly affected by the boundary layers developed near
the top and bottom end plates (Acheson & Hide 1973; Davidson & Pothérat 2002;
Hollerbach & Fournier 2004; Kageyama et al. 2004; Szklarski & Rüdiger 2007; Liu
2008a). The thickness of these boundary layers can be obtained from force-balance
equation (2.4). Indeed, for the azimuthal component of this equation, we have the
following estimates of the terms near the end plates:

O

(
1

δ2
z

)
+ O(Γ 2) = O

(
Re

r2
1

)
+ O(Ha2), (5.4)
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where Γ =H/(R2 − R1) is the aspect ratio of the channel, the left-hand side
characterizes viscous forces and two terms on the right-hand side characterize inertia
and Ampere force, respectively. Depending on the relative values of Γ , Re and Ha ,
three basic types of boundary layers are possible; they correspond to three different
regimes of TCF:

(i) viscous regime with viscous layers of width

δvisc ≈ 1

Γ
≈ r2 − r1;

(ii) inertial regime with Ekman layers of width

δEk ≈ r1√
Re

;

(iii) magnetized regime with Hartmann layers of width

δHa ≈ 1

Ha
.

Below, we consider these regimes in more detail.

5.3. Viscous regime

In the viscous regime, when Re � Γ r1 and Ha � Γ , we can assume Ha = 0 and
Re =0, so system (2.6)–(2.9) is reduced to one equation

∂2u

∂r2
− 1

r

∂u

∂r
+

∂2u

∂z2
= 0. (5.5)

Strictly speaking, the case of Re = 0 presumes no rotation at all; it is physically
meaningful to consider it only as the limit of small Reynolds numbers, Re → 0.
Equation (5.5) with boundary conditions (5.1) can be solved exactly in terms of
infinite series (Wendl 1999). In a small gap approximation (r2 − r1 � r1,2), the solution
has the form

u(r, z) =
u1r

2
2 − u2r

2
1

r2
2 − r2

1

+
u2 − u1

r2
2 − r2

1

r2 +

∞∑
j=1

aj sin

[
2jkr

(
r − r1 + r2

2

)]
cosh[2jkrz]

cosh[2jkr ]

+

∞∑
j=0

bj cos

[
(2j + 1)kr

(
r − r1 + r2

2

)]
cosh[(2j + 1)krz]

cosh[(2j + 1)kr ]
, (5.6)

where

kr =
π

r2 − r1

,

and the coefficients aj and bj are

aj =
(−1)j (u2 − u1)

πj
,

bj = −2(−1)j (u1 + u2)

π(2j + 1)
+

8(−1)j (u2 − u1)(r2 − r1)

π3(2j + 1)3(r1 + r2)
.

Equation (5.6) is simplified if we consider a rotation with u1 = u2 = 1. In this case, the
r-profile of the normalized angular momentum u in the mid-plane of the channel at
z = 0 can be approximated as

u(r) ≈ 1 − 4 cos[kr (r − (r1 + r2)/2)]

π cosh kr

, (5.7)
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while the z-profile of u in the middle section of the channel at r =(r1 + r2)/2 is
approximated as

u(z) ≈ 1 − cosh[krz]

cosh kr

. (5.8)

The calculated structure of TCF in viscous regime (Re = 1, Ha = 1) for u1 = u2 = 1
is shown in figure 8(i.a–d ). In these simulations, values of Re and Ha are taken small
but finite to have functions w and h not equal to zero identically. As one can see, the
normalized angular momentum is almost 1 in the central part of the cross-section of
the channel and decreases to 0 in the viscous boundary layers near the end plates.
This result is in a good agreement with (5.7) and (5.8); the comparison is shown in
figure 9. Thus, we conclude that the viscous TCF is appropriate for MRI experiments
if the boundary layers are less than the height of the channel or, in other words, if

R2 − R1 � H. (5.9)

5.4. Inertial regime

In the inertial regime, when Re � Γ 2r2
1 and Re � Ha2r2

1 , we can neglect the magnetic
field, so system (2.6)–(2.9) becomes

0 = 
∗u +
Re

r
[u, w],

0 = 
∗
∗w − Re

(
r

[
w,


∗w

r2

]
+

1

r2

∂u2

∂z

)
.

The analytical treatment of such system is quite difficult since the equations are
essentially nonlinear. In this section we discuss only the numerical results for the case
u1 = u2 = 1.

The equilibrium structure of the inertial TCF (Re = 500, Ha =1) is presented in
figure 8(ii.a–d ). We take a small but finite value of Ha to demonstrate the distribution
of the current in this regime (if Ha = 0, then h = 0 identically). One of the typical
features of high-Re Taylor–Couette flow is the existence of the jet-like formation
near the mid-plane (at z = 0) of the azimuthal momentum profile u (figure 8ii.a). It is
undoubtedly the counterpart of the strong radial outflow that is seen in figure 8(ii.b).
Such jet-like structures in the flow are explained by the presence of the steady end
plates (Ji et al. 2004; Kageyama et al. 2004).

These results suggest that the inertial regime of TCF is of little use in the MRI
experiments. The instabilities one obtains in this regime (even with magnetic field) will
most probably be the familiar Kelvin–Helmholtz instabilities of the jet-like structures,
rather than the magnetorotational instability. At best, one might hope to obtain the
MRI superimposed on these Kelvin–Helmholtz modes. Any subsequent interpretation
of experimental results will be quite complicated.

5.5. Magnetized regime

The magnetized regime of TCF is realized when Ha � Γ and Ha2r2
1 � Re. It is

formally described by system (2.6)–(2.9) in the limit of small Reynolds numbers,
Re → 0:

0 = 
∗u + Ha
∂h

∂z
, (5.10)

0 = 
∗h + Ha
∂u

∂z
. (5.11)
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Figure 8. Calculated structure of TCF in (i ) viscous (Re = 1, Ha = 1), (ii ) inertial (Re = 500,
Ha =1) and (iii ) magnetized (Re = 1, Ha =30) regimes. (a) Normalized angular momentum
u(r, z); (b) poloidal circulation lines (contours of w(r, z)); (c) electric current lines (contours
of h(r, z)); (d ) balance of toroidal forces at r =1. Calculations are performed using the full
system (2.6)–(2.8).

Similar to the case of EDF we can represent the normalized angular momentum
u(r, z) in the form (4.10). Then we use the method of averaging along the magnetic
field lines to find the radial profile u0(r). This method results in (4.13) which for TCF
reads

∂2u0

∂r2
− 1

r

∂u0

∂r
− Hau0 = 0. (5.12)
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Figure 9. Comparison of calculated angular momentum profile u(r, z) (solid lines) with
analytical approximation given by (5.7) and (5.8) (dashed lines) in the viscous regime of
TCF (Re = 1, Ha = 1): (a) in the mid-plane of the channel at z =0; (b) at r = 1.

The only difference between (5.12) and (4.13) is the absence in (5.12) of the term
related to the electrical current drive. As a result, the solution to (5.12) satisfying the
boundary conditions (5.1) can be written in a form analogous to (4.14):

u0(r) =
r

I1(
√

Ha(r2 − r1))

[
u1

r1

I1(
√

Ha(r2 − r)) +
u2

r2

I1(
√

Ha(r − r1))

]
. (5.13)

Near the walls at r = r1,2 dependence (5.13) becomes

u0(x) ≈ u1,2 exp(−
√

Ha x), (5.14)

where x = |r − r1,2| is a non-dimensional distance measured from the corresponding
wall. Within the side (parallel) layers of thickness O(Ha−1/2), the angular momentum
drops by factor e = 2.718. Thus, if the side layers are much less than the gap between
cylinders, i.e. Ha−1/2 � r2 − r1, velocity in the bulk of the fluid is practically zero. This
result follows from the presence of the steady end caps and Ferraro’s iso-rotation
law (Ferraro 1937): the angular velocity of a highly conducting fluid tends to be
constant along a magnetic field line to minimize the induction effect. In order to use
the magnetized regime of TCF in the MRI experiment one has to ensure that the gap
between cylinders is less than the side layers, i.e.

R2 − R1 �
H√
Ha

. (5.15)

Only if (5.15) is satisfied, the angular velocity of the fluid can be well approximated
by (in dimensional units)

Ω(R) =
M2 − M1

R2
2 − R2

1

+

(
M1R

2
2 − M2R

2
1

R2
2 − R2

1

)
1

R2
, (5.16)
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Figure 11. Calculated z-profiles of normalized angular momentum u(r, z) at r = 1 in TCF
for different values of Re at Ha =30.

where M1 = Ω1R
2
1 , M2 = Ω2R

2
2 are angular momenta of the inner and outer walls,

respectively.
The structure of TCF in the magnetized regime (Re = 1, Ha = 30) is shown in

figure 8(iii.a–d ). In this regime the angular momentum profile in the cross-section
of the channel (figure 8iii.a) is almost homogeneous in the z-direction and has a
parabolic radial dependence as predicted by (5.13). For comparison, the analytical and
calculated profiles of u are plotted in figure 10. Figure 8(iii.c) shows the distribution
of poloidal electric current in this case.

The dependence of the angular momentum’s z-profile on the Reynolds number is
shown in figure 11. As one can see, the increase of Reynolds number results in a
considerable change of the flow structure. In fact, when Ha = 30 and Re � 1000 the
flow turns to inertial regime.
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5.6. Rotating split end caps

Inequality (5.15) limits the strength of the magnetic field that can be used in the TCF
MRI experiment. The highest magnetic field, which does not change rotation profile
(5.16) considerably, corresponds to the Hartmann number (see (5.15))

Ha ≈ Γ 2, (5.17)

where Γ = H/(R2 − R1) is the aspect ratio of the channel. The maximum value of
the Hartmann number (5.17) can be increased by dividing the end caps into multiple
rings that rotate independently. Such idea is realized in the Princeton MRI experiment
(Kageyama et al. 2004; Ji et al. 2004, 2006; Liu 2008a ,b), where two rings are used.
Here we consider the effect of these rings on the rotation profile in the magnetized
regime of TCF.

First, we study the case of the rigidly rotating end caps (number of rings is N = 1),
assuming that their angular velocity is Ω . Neglecting inertial effects we look for a
solution to system (5.10) and (5.11) with u(r, z) satisfying the boundary condition

u|z=±1 = Ωr2.

Similar to (4.10) the normalized angular momentum u(r, z) can be approximated as

u(r, z) = u0(r)
cosh Ha − cosh(Ha z)

sinhHa
+ Ωr2, (5.18)

where

u0(r) =
r

I1(
√

Ha(r2 − r1))

[
u1 − Ωr2

1

r1

I1(
√

Ha(r2 − r)) +
u2 − Ωr2

2

r2

I1(
√

Ha(r − r1))

]
.

(5.19)

Near the walls at r = r1,2 angular momentum profile is

u(r) ≈ (u1,2 − Ωr2) exp(−
√

Ha |r − r1,2|) + Ωr2. (5.20)

Equation (5.20) describes an exponential approach of angular velocity to Ω in the
side layers of thickness O(Ha−1/2) (see figure 12, case N = 1). Therefore, we conclude
that for Hartmann numbers larger than (5.17), the bulk of the fluid will rotate rigidly
with angular velocity Ω . This is not appropriate for MRI experiment.

This result can be generalized to the case with any number of rings N . We note
that from the mathematical point of view a circular channel bounded by N pairs
of rotating rings (one ring on the top and one on the bottom) is equivalent to the
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set of N narrower channels formed by the corresponding pair of rings. The angular
momentum profile in each of N channels is approximated by (5.18) and (5.19), with
u1 and u2 being matching parameters. For the large Hartmann numbers the radial
profile of angular velocity has a step-like form (see figure 12, case N = 2). Profiles
closer to (5.16) are obtained if the Hartmann number does not exceed value (for
equally spaced N rings)

Ha ≈ N2Γ 2, (5.21)

which is obviously an improvement compared to (5.17).
Analogous conclusions can be made for other regimes of TCF. The implementation

of independently rotating rings at the end caps improves the rotation profile (makes
it closer to (5.16)) and broadens the range of Ha and Re appropriate for MRI
experiment. Kageyama et al. (2004) demonstrated numerically the transition from
inertial to viscous regimes of non-magnetized TCF with inclusion of 3, 4 and 5 rings.
A similar transition for magnetized TCF with inclusion of two rings was reported by
Liu (2008a). The simple estimates of the parameters for different TCF regimes and
the thickness of the corresponding boundary layers in the case of N rings can be
obtained from (5.4) by changing Γ → NΓ .

6. Conclusions
We have performed the theoretical study of stationary MHD flow structure in an

annular channel from the perspective of establishing required parameters for liquid
metal MRI experiment. According to obtained results, both electrically driven and
Taylor–Couette flows can be used as initial equilibria in MRI experiment. However,
different conditions have to be satisfied in both cases to achieve the rotation profiles
appropriate for MRI excitation (uniform in axial direction and quasi-Keplerian in
radial direction). In the case of TCF, the experimental parameters should satisfy
inequality (5.15), while for EDF the opposite condition is necessary (4.16). Besides,
the inertial effects have to be reduced in both cases since they influence the rotational
profile considerably; this results in condition (4.12). The range of ‘good’ parameters
for MRI experiment is summarized in figure 13.

From figure 13(a), one can see that in TCF the ‘good’ region of parameters is
restricted. The limits of this region are determined by the aspect ratio of the channel,
Γ = H/(R2 − R1), and by the number of independently rotating rings in the end caps,
N . For the geometry of the Princeton MRI experiment with aspect ratio Γ = 2 (table
1) and N = 2, the values of the Hartmann and Reynolds numbers should not exceed
Ha ≈ N2Γ 2 ≈ 16 and Re ≈ Ha2(R1/H )2 ≈ 16, respectively. It is well known that MRI
in liquid metals does not occur at such small Reynolds numbers (Kageyama et al.
2004).

As follows from figure 13(b), the ‘good’ region of EDF is not restricted by the large
values of Hartmann number, but it is still limited by the large values of Reynolds
number. For the Obninsk MRI experiment (table 1) with Ha = 100, the maximum
appropriate Reynolds number is Re ≈ 2500. This is too small for the detection of
axisymmetric MRI but can be enough for the observation of non-axisymmetric MRI
modes since they have a lower instability threshold (Khalzov et al. 2006; Khalzov,
Smolyakov & Ilgisonis 2008; Ilgisonis, Khalzov & Smolyakov 2009).

We remark briefly on three issues that might be crucial for the realization of
EDF MRI experiment. First, the rotation profile of EDF is predetermined by the
drive type: the bulk of the flow corresponds to the so-called Rayleigh line, i.e. the
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Figure 13. Regimes of flows and regions of ‘good’ parameters in MRI experiments (shaded
areas): (a) for Taylor–Couette flow; (b) for electrically driven flow. Γ = H/(R2 − R1) is the
aspect ratio of the channel and N is the number of rings in the end caps.

flow with constant angular momentum. According to Rüdiger, Schultz & Shalybkov
(2003) and Hollerbach & Rüdiger (2005), at this line the MRI threshold is incredibly
sensitive to the slightest deviations of the rotation profile, which are certainly present
in the experiment due to the boundary layers. However, as discussed by Velikhov
et al. (2006a) such a sensitivity of the Rayleigh line results from minimization of the
critical Reynolds number over the magnetic field; so, different points of the threshold
curves shown by Rüdiger et al. (2003) and Hollerbach & Rüdiger (2005) correspond
to different magnitudes of the magnetic field. In the real experiment with the fixed
magnetic field such sensitivity of the Rayleigh line does not take place.

The second important issue in EDF is related to the hydrodynamical stability of the
parallel boundary layer near the outer wall. The angular momentum profile is radially
decreasing in that layer, so that the Rayleigh stability criterion (1.2) is violated and
the hydrodynamical instability can develop there. Experimentally, this instability and
MRI can be distinguished due to their different spatial localizations: hydrodynamical
instability (and resulting turbulence) is localized near the outer wall, while MRI is
global and it affects the bulk of the flow. It means that MRI should change the global
fluid properties, for example, the effective resistance; the corresponding break of the
current-voltage characteristic can be detected experimentally. Obviously, it is not the
case for the local hydrodynamical instability. Another way to solve the problem with
the side boundary layers is to get rid of them by using the combination of EDF and
TCF, which is known as Taylor–Dean flow (Stefani & Gerbeth 2004). An analysis of
this flow is beyond the scope of our paper.

The third issue concerns the stability of the Hartmann layers in EDF. The Hartmann
boundary layer is known to be subcritically (nonlinearly) unstable (Moresco &
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Alboussiére 2003). Transition to turbulence in the Hartmann layer was observed
experimentally and confirmed numerically when 150 < Re/Ha < 400 (Moresco &
Alboussiére 2004; Thess et al. 2007). In recent experiment with EDF in an annular
channel, Moresco & Alboussiére (2004) reported such transition for Re/Ha = 380. If
EDF is indeed unstable due to the presence of the Hartmann layers, this may bring
an additional limitation for the region of “good” parameters of EDF. This is a subject
of the further study.
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Pothérat, A., Sommeria, J. & Moreau, R. 2000 An effective two-dimensional model for MHD

flows with transverse magnetic field. J. Fluid Mech. 424, 75–100.

Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vettering, W. 1992 Numerical Recipes in C:
The Art of Scientific Computing , 2nd ed. Cambridge University Press.
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